Modelling 1 SUMMER TERM 2020

LECTURE 19 Regular and Irregular Sampling

Michael Wand · Institut für Informatik · Michael.Wand@uni-mainz.de

Sampling & Reconstruction

(b) a regular sampling pattern (impulse train) and its frequency spectrum $(s(t) \cdot u(t)) \otimes FT^{-1}(\mathbf{R})$ $FT^{-1}(\mathbf{R})$ t

(d) reconstruction: filtering with a low-pass filter R to remove replicated spectra

Reference: Foley, van Dam, Feiner, Hughes **Computer Graphics - Principles & Practice, 2nd Edition**, Addisson-Wesley, 1996 Chapter 14.10 "Aliasing and Antialiasing"

Regular Sampling

Reconstruction Filters

- Optimal filter: sinc (no frequencies discarded)
- However:
 - Ringing artifacts in spatial domain
 - Not useful for images (better for audio)
- Compromise
 - Gaussian filter (most frequently used)
 - There exist better ones, such as Mitchell-Netravalli, Lancos, etc...

Ringing by sinc reconstruction from [Mitchell & Netravali, Siggraph 1988]

2D Gaussian

2D sinc

Irregular Sampling

Irregular Sampling

Irregular Sampling

- No comparable formal theory
- However: similar idea
 - Band-limited by "sampling frequency"
 - Sampling frequency = mean sample spacing
 - Not as clearly defined as in regular grids

– May vary locally (adaptive sampling)

- Aliasing
 - Random sampling creates noise as aliasing artifacts
 - Evenly distributed sample concentrate noise in higher frequency bands in comparison to purely random sampling

Consequences

When designing bases for function spaces

- Use band-limited functions
- Typical scenario:
 - Regular grid with spacing σ
 - Grid points g_i

• Use functions:
$$\exp\left(-\frac{(\mathbf{x}-\mathbf{g}_i)^2}{\sigma^2}\right)$$

- Irregular sampling:
 - Same idea
 - Use estimated sample spacing instead of grid width
 - Set σ to average sample spacing to neighbors

Random Sampling

Random sampling

- Aliasing gets replaced by noise
- Can we optimize this? Yes!

Different types of noise

- "White noise": All frequencies equally likely
- "Blue noise": Pronounced high-frequency content

Depends on sampling

- Random sampling is "white"
- Poisson-disc sampling (uniform spacing) is "blue"

Random Noise

pixel image (b/w)

Poisson Disc Sampling

pixel image (b/w)

Regular Sampling

· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	

pixel image (b/w)

Jittered Grid (Uniform Displacem.)

pixel image (b/w)

Jittered Grid (same density)

pixel image (b/w)

Examples

pixel image (b/w)

Why should we care?

Example: Stochastic Raytracing

- Shoot random rays \rightarrow random noise
- Low-pass filter \rightarrow less noise
 - Low-frequency noise persists
 - LF-noise is particularly ugly!
 - Need many samples

Recipe: Sampling Signals

Given

• Function $f: \mathbb{R} \to \mathbb{R}$

Uniform sampling

• Sample spacing δ (given)

Choose filter kernel

In case of doubt, try:

$$\omega(\mathbf{x}) = \exp(-\delta^{-1}x^2)$$

- Sample $(f \otimes \omega(\mathbf{x}))$ regularly
 - For example: Monte-Carlo integration

Given

• Function $f: \mathbb{R}^n \to \mathbb{R}^m$

Multi-dimensional Gaussian

In case of doubt, try:

$$\omega(\mathbf{x}) = \prod_{d=1}^{n} \exp\left(-\frac{1}{\delta} x_d^2\right)$$

Same procedure otherwise...

Multi-dimensional Gaussian

$$\omega(\mathbf{x}) = \prod_{d=1}^{n} \exp\left(-\frac{1}{\delta} x_d^2\right)$$

Non-Uniform Sampling

- Choose sample spacing $\delta(\mathbf{x})$
- Match level of detail
 - Nyquest limit
 - Spacing between two "ups" = frequency
- Filter adaptively
 - Varying filter width
- Sample adaptively
 - Sampling width varies accordingly

Recipe: Reconstructing Signals

Signal Rec

Uniform

- Given samples $y_i = f(x_i)$, i = 1, ..., n, spacing δ
- Chose reconstruction filter

• Try:
$$\omega(\mathbf{x}) = \exp(-\delta^{-1}x^2)$$

Reconstruction: $\tilde{f} = \sum_{i=1}^{n} y_i \cdot \omega(\mathbf{x} - x_i)$

Non-Uniform

Non-Uniform

- Samples $y_i = f(x_i), i = 1, ..., n$,
- Varying spacing δ_i
 - If unknown: average spacing of k-nearest neighbors
- Chose reconstruction filter

• Try:
$$\omega_i(\mathbf{x}) = \exp(-\delta_i^{-1}(x - x_i)^2)$$

Reconstruction:

$$\tilde{f} = \frac{\sum_{i=1}^{n} y_i \cdot \omega_i (\mathbf{x} - x_i)}{\sum_{i=1}^{n} \omega_i (\mathbf{x} - x_i)}$$

"Partition of Unity" just to be save... Reconstruction: Implementation

Variant 1: Gathering

- Record samples in list (plus kD Tree, Octree, grid)
- For each *pixel*:
 - Range query: kernel support radius
 - Compute weighted sum (last slide)

Variant 2: Splatting

- Two *pixel* buffers: Color (3D), weight (1D)
- Iterate over samples:
 - Add Gaussian splat to weight buffer
 - Add 3× Gaussian splat scaled by RGB to color buffer
- In the end: Divide color buffer by weight buffer.

Gathering

Splatting

color buffer

weight buffer

$$\tilde{f} = \frac{\sum_{i=1}^{n} \mathbf{y}_{i} \cdot \boldsymbol{\omega}(\mathbf{x} - \mathbf{x}_{i})}{\sum_{i=1}^{n} \boldsymbol{\omega}(\mathbf{x} - \mathbf{x}_{i})}$$

Remark: Anisotropic Filtering

$$\tilde{f} = \frac{\sum_{i=1}^{n} \mathbf{y}_{i} \cdot \boldsymbol{\omega}(\mathbf{x} - \mathbf{x}_{i})}{\sum_{i=1}^{n} \boldsymbol{\omega}(\mathbf{x} - \mathbf{x}_{i})}$$

Building Anisotropic Filters

How to construct?

- Given: Kernel w(x)
 - For example: $w(\mathbf{x}) = \exp\left(-\frac{1}{2\sigma}\mathbf{x}^{\mathrm{T}}\mathbf{x}\right)$
- Coordinate transformation:
 - $w(\mathbf{x}) \rightarrow w(\mathbf{T}\mathbf{x})$

• Gaussian:
$$w(\mathbf{x}) = \exp\left(-\frac{1}{2\sigma}\mathbf{x}^{\mathrm{T}}[\mathbf{T}^{\mathrm{T}}\cdot\mathbf{T}]\mathbf{x}\right)$$

Advanced Reconstruction

Push-Pull Algorithm

FIGURE 10.101

(a) The test situation: a straight edge between black and white regions. (b) A failure of weighted-average reconstruction. Reprinted, by permission, from Mitchell in Computer Graphics (Proc. Siggraph '87), fig. 11, p. 72.

FIGURE 10.103 Reconstruction with the Mitchell multistage filter. Reprinted, by permission, from Mitchell in Computer Graphics (Proc. Siggraph '87), fig. 14, p. 72.

Source: [Glassner 1995, Principles of digital image synthesis, CC license]

Remedy

Push-Pull-Algorithm

- Reconstruct at multiple levels (stratification)
 - Build quadtree
 - Keep one sample per cell
 - Creates different levels
- Add results together
 - Do not reconstruct in empty cells

Reduced bias

Advanced Reconstruction Moving Least-Squares

Moving Least Squares

Moving least squares (MLS):

- MLS is a standard technique for scattered data interpolation.
- Generalization of partition-of-unity method

Weighted Least-Squares

weighting functions

least squares fit

Least-Squares

Least Squares Approximation:

$$\widetilde{y}(x) = \sum_{i=1}^{n} \lambda_{i} B_{i}(x)$$

Best Fit (weighted):

$$\underset{c_{i}}{\operatorname{argmin}} \quad \sum_{i=1}^{n} \left\| \left(\widetilde{y}(x_{i}) - y_{i} \right) \omega(x_{i}) \right\|^{2}$$

Least-Squares

Nortaal Equations: $(\mathbf{B}^T \mathbf{W}^2 \mathbf{B}) \lambda = (\mathbf{B}^T \mathbf{W}^2) \mathbf{y}$ Solution: $\lambda = (\mathbf{B}^T \mathbf{W}^2 \mathbf{B})^{-1} \mathbf{B}^T \mathbf{W}^2 \mathbf{y}$ Evaluation: $\widetilde{y}(x) = \langle \mathbf{b}(x), \lambda \rangle = \mathbf{b}(x)^T (\mathbf{B}^T \mathbf{W}^2 \mathbf{B})^{-1} \mathbf{B}^T \mathbf{W}^2 \mathbf{y}$ MLS approximation

$$\mathbf{b} \coloneqq \begin{bmatrix} B_1, \dots, B_n \end{bmatrix}$$
$$\mathbf{B} \coloneqq \begin{bmatrix} -\mathbf{b}(x_1) - \\ \vdots \\ -\mathbf{b}(x_n) - \end{bmatrix} \qquad \mathbf{y} \coloneqq \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \qquad \mathbf{W} \coloneqq \begin{bmatrix} \omega(x_1) \\ \ddots \\ \omega(x_n) \end{bmatrix}$$

Moving Least-Squares

Moving Least Squares Approximation:

recompute approximation $\widetilde{y}(x)$

Moving Least-Squares

Moving Least Squares Approximation:

Summary: MLS

Standard MLS approximation:

- Choose set of basis functions
 - Typically monomials of degree 0,1,2
- Choose weighting function
 - Typical choices: Gaussian, Wendland function, B-Splines
 - Solution will have the same continuity as the weighting function.
- Solve a weighted least squares problem at each point:

 $\widetilde{y}(x) = \mathbf{b}(x)^{\mathrm{T}} \left(\mathbf{B}(x)^{\mathrm{T}} \mathbf{W}(x)^{2} \mathbf{B}(x) \right)^{-1} \mathbf{B}(x)^{\mathrm{T}} \mathbf{W}(x)^{2} \mathbf{y}$ moment matrix

- Need to invert the "moment matrix" at each evaluation.
- Use SVD if sampling requirements are not guaranteed.

Remark Uncertainty Relation(s)

Fourier Transform Pairs

Gaussians

$$f(x) = e^{-ax^2} \rightarrow F(\omega) = \sqrt{\frac{\pi}{a}} \cdot e^{-\frac{(\pi\omega)^2}{a}}$$

Taylor-Approximation

