Modelling 1 SUMMER TERM 2020

$$
F(\omega)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \omega} d x
$$

LECTURE 19

Regular and Irregular Sampling

Sampling \& Reconstruction

spatial domain

(a) a continuous function and its frequency spectrum

(b) a regular sampling pattern (impulse train) and its frequency spectrum
spatial domain

frequency domain

(c) sampling: frequencies beyond the Nyquest limit $v_{s} / 2$ appear as aliasing

(d) reconstruction: filtering with a low-pass filter R to remove replicated spectra

Reference: Foley, van Dam, Feiner, Hughes
Computer Graphics - Principles \& Practice, 2nd Edition, Addisson-Wesley, 1996
Chapter 14.10 "Aliasing and Antialiasing"

Regular Sampling

Reconstruction Filters

- Optimal filter: sinc (no frequencies discarded)
- However:
- Ringing artifacts in spatial domain
- Not useful for images (better for audio)

Ringing by sinc reconstruction from [Mitchell \& Netravali, Siggraph 1988]

- Compromise
- Gaussian filter (most frequently used)
- There exist better ones, such as Mitchell-Netravalli, Lancos, etc...

2D sinc

2D Gaussian

Irregular Sampling

Irregular Sampling

Irregular Sampling

- No comparable formal theory
- However: similar idea
- Band-limited by "sampling frequency"
- Sampling frequency = mean sample spacing
- Not as clearly defined as in regular grids
- May vary locally (adaptive sampling)
- Aliasing
- Random sampling creates noise as aliasing artifacts
- Evenly distributed sample concentrate noise in higher frequency bands in comparison to purely random sampling

Consequences

When designing bases for function spaces

- Use band-limited functions
- Typical scenario:
- Regular grid with spacing σ
- Grid points \mathbf{g}_{i}
- Use functions: $\exp \left(-\frac{\left(\mathbf{x}-\mathbf{g}_{i}\right)^{2}}{\sigma^{2}}\right)$
- Irregular sampling:
- Same idea
- Use estimated sample spacing instead of grid width
- Set σ to average sample spacing to neighbors

Random Sampling

Random sampling

- Aliasing gets replaced by noise
- Can we optimize this? - Yes!

Different types of noise

- "White noise": All frequencies equally likely
- "Blue noise": Pronounced high-frequency content

Depends on sampling

- Random sampling is "white"
- Poisson-disc sampling (uniform spacing) is "blue"

Random Noise

pixel image (b/w)

discrete Fourier transform (power-spectrum)

Poisson Disc Sampling

pixel image (b/w)

discrete Fourier transform
(power-spectrum)

Regular Sampling

pixel image (b/w)

discrete Fourier transform (power-spectrum)

Jittered Grid (Uniform Displacem.)

pixel image (b/w)

discrete Fourier transform (power-spectrum)

Jittered Grid (same density)

pixel image (b/w)
discrete Fourier transform (power-spectrum)

Examples

pixel image (b/w)

discrete Fourier transform
 (power-spectrum)

Why should we care?

Example: Stochastic Raytracing

- Shoot random rays \rightarrow random noise
- Low-pass filter \rightarrow less noise
- Low-frequency noise persists
- LF-noise is particularly ugly!
- Need many samples

Recipe:
 Sampling Signals

How to Sample

Given

- Function $f: \mathbb{R} \rightarrow \mathbb{R}$

Uniform sampling

- Sample spacing δ (given)

Choose filter kernel

- In case of doubt, try:

$$
\omega(\mathrm{x})=\exp \left(-\delta^{-1} x^{2}\right)
$$

- Sample ($f \otimes \omega(\mathrm{x})$) regularly
- For example: Monte-Carlo integration

How to Sample

Given

- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Multi-dimensional Gaussian

- In case of doubt, try:

$$
\omega(\mathrm{x})=\prod_{d=1}^{\mathrm{n}} \exp \left(-\frac{1}{\delta} x_{d}^{2}\right)
$$

- Same procedure otherwise...

How to Sample

Multi-dimensional Gaussian

$$
\omega(\mathrm{x})=\prod_{d=1}^{\mathrm{n}} \exp \left(-\frac{1}{\delta} x_{d}^{2}\right)
$$

How to Sample

Non-Uniform Sampling

- Choose sample spacing $\delta(\mathrm{x})$
- Match level of detail
- Nyquest limit
- Spacing between two "ups" = frequency
- Filter adaptively
- Varying filter width
- Sample adaptively
- Sampling width varies accordingly

Recipe:

Reconstructing Signals

Signal Rec

Uniform

- Given samples $y_{i}=f\left(x_{i}\right), i=1, \ldots, n$, spacing δ
- Chose reconstruction filter
- Try: $\omega(\mathrm{x})=\exp \left(-\delta^{-1} x^{2}\right)$

Reconstruction: $\tilde{f}=\sum_{i=1}^{n} y_{i} \cdot \omega\left(\mathrm{x}-x_{i}\right)$

Non-Uniform

Non-Uniform

- Samples $y_{i}=f\left(x_{i}\right), i=1, \ldots, n$,
- Varying spacing δ_{i}
- If unknown: average spacing of k-nearest neighbors
- Chose reconstruction filter
- Try: $\omega_{i}(\mathrm{x})=\exp \left(-\delta_{i}^{-1}\left(x-x_{i}\right)^{2}\right)$

Reconstruction:

$$
\tilde{f}=\frac{\sum_{i=1}^{n} y_{i} \cdot \omega_{i}\left(\mathrm{x}-x_{i}\right)}{\sum_{i=1}^{n} \omega_{i}\left(\mathrm{x}-x_{i}\right)}
$$

"Partition of Unity" just to be save...

Reconstruction: Implementation

Variant 1: Gathering

- Record samples in list (plus kD Tree, Octree, grid)
- For each pixel:
- Range query: kernel support radius
- Compute weighted sum (last slide)

Variant 2: Splatting

- Two pixel buffers: Color (3D), weight (1D)
- Iterate over samples:
- Add Gaussian splat to weight buffer
- Add $3 \times$ Gaussian splat scaled by RGB to color buffer
- In the end: Divide color buffer by weight buffer.

Gathering

$$
\leftarrow 1 \text { pixel } \rightarrow
$$

rays $x_{i}, f\left(x_{i}\right) \quad$ filter ω

$$
\tilde{f}=\frac{\sum_{i=1}^{n} y_{i} \cdot \omega\left(\mathrm{x}-x_{i}\right)}{\sum_{i=1}^{n} \omega\left(\mathrm{x}-x_{i}\right)}
$$

Splatting

color buffer

weight buffer

$$
\tilde{f}=\frac{\sum_{i=1}^{n} y_{i} \cdot \omega\left(\mathrm{x}-x_{i}\right)}{\sum_{i=1}^{n} \omega\left(\mathrm{x}-x_{i}\right)}
$$

Remark: Anisotropic Filtering

$$
\tilde{f}=\frac{\sum_{i=1}^{n} y_{i} \cdot \omega\left(\mathrm{x}-x_{i}\right)}{\sum_{i=1}^{n} \omega\left(\mathrm{x}-x_{i}\right)}
$$

Building Anisotropic Filters

How to construct?

- Given: Kernel $w(\mathbf{x})$
- For example: $w(\mathrm{x})=\exp \left(-\frac{1}{2 \sigma} \mathrm{x}^{\mathrm{T}} \mathrm{x}\right)$
- Coordinate transformation:
- $w(\mathrm{x}) \rightarrow w(\mathrm{Tx})$
- Gaussian: $w(\mathrm{x})=\exp \left(-\frac{1}{2 \sigma} \mathrm{x}^{\mathrm{T}}\left[\mathrm{T}^{\mathrm{T}} \cdot \mathrm{T}\right] \mathrm{x}\right)$

Advanced
 Reconstruction

Push-Pull Algorithm

HIOURE 10.101
(a) The test situation: a straight edge between black and white regions. (b) A failure of weighted-average reconstruction. Reprinted, by permission, from Mitchell in Computer Graphics (Proc. Siggraph '87), fig. 11, p. 72.

HeURE 10.103
Reconstruction with the Mitchell multistage filter.
Reprinted, by permission, from Mitchell in Computer Graphics (Proc. Siggraph '87), fig. 14, p. 72.

Source: [Glassner 1995, Principles of digital image synthesis, CC license]

Remedy

Push-Pull-Algorithm

- Reconstruct at multiple levels (stratification)
- Build quadtree
- Keep one sample per cell
- Creates different levels
- Add results together
- Do not reconstruct in empty cells

Reduced bias

Advanced Reconstruction Moving Least-Squares

Moving Least Squares

Moving least squares (MLS):

- MLS is a standard technique for scattered data interpolation.
- Generalization of partition-of-unity method

Weighted Least-Squares

Least Squares Approximation:

$$
B_{1} \quad B_{2} \quad B_{3}
$$

target values
basis functions
\downarrow

Least-Squares

Least Squares Approximation:

$$
\tilde{y}(x)=\sum_{i=1}^{n} \lambda_{i} B_{i}(x)
$$

Best Fit (weighted):

Least-Squares

Nubotaaldiquations: $\left(\mathbf{B}^{T} \mathbf{W}^{2} \mathbf{B}\right) \boldsymbol{\lambda}=\left(\mathbf{B}^{T} \mathbf{W}^{2}\right) \mathbf{y}$
Solution: $\quad \boldsymbol{\lambda}=\left(\mathbf{B}^{T} \mathbf{W}^{2} \mathbf{B}\right)^{-1} \mathbf{B}^{T} \mathbf{W}^{2} \mathbf{y}$
Evaluation: $\tilde{y}(x)=\langle\mathbf{b}(x), \boldsymbol{\lambda}\rangle=\mathbf{b}(x)^{\mathrm{T}}\left(\mathbf{B}^{\mathrm{T}} \mathbf{W}^{2} \mathbf{B}\right)_{\text {MLS approximation }} \mathbf{B}^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{W}^{2} \mathbf{y}$

$$
\begin{gathered}
\mathbf{b}:=\left[B_{1}, \ldots, B_{n}\right] \\
\mathbf{B}:=\left[\begin{array}{c}
-\mathbf{b}\left(x_{1}\right)- \\
\vdots \\
-\mathbf{b}\left(x_{n}\right)-
\end{array}\right] \quad \mathbf{y}:=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] \quad \mathbf{W}:=\left[\begin{array}{c}
\omega\left(x_{1}\right) \\
\ddots \\
\omega\left(x_{n}\right)
\end{array}\right]
\end{gathered}
$$

Moving Least-Squares

Moving Least Squares Approximation:

target values

move basis and weighting function, recompute approximation $\tilde{y}(x)$

Moving Least-Squares

Moving Least Squares Approximation:

Summary: MLS

Standard MLS approximation:

- Choose set of basis functions
- Typically monomials of degree 0,1,2
- Choose weighting function
- Typical choices: Gaussian, Wendland function, B-Splines
- Solution will have the same continuity as the weighting function.
- Solve a weighted least squares problem at each point:

$$
\begin{aligned}
& \tilde{y}(x)=\mathbf{b}(x)^{\mathrm{T}}\left(\mathbf{B}(x)^{\mathrm{T}} \mathbf{W}(x)^{2} \mathbf{B}(x)\right)^{-1} \mathbf{B}(x)^{\mathrm{T}} \mathbf{W}(x)^{2} \mathbf{y} \\
& \text { moment matrix }
\end{aligned}
$$

- Need to invert the "moment matrix" at each evaluation.
- Use SVD if sampling requirements are not guaranteed.

Remark Uncertainty Relation(s)

Fourier Transform Pairs

Gaussians

$$
f(x)=e^{-a x^{2}} \quad \rightarrow \quad F(\omega)=\sqrt{\frac{\pi}{a}} \cdot e^{-\frac{(\pi \omega)^{2}}{a}}
$$

Taylor-Approximation

Function f

tangent slope

$$
\begin{gathered}
f: \mathbb{R} \rightarrow \mathbb{R} \\
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{gathered}
$$

Think of this:

$$
\begin{gathered}
f=\left(y_{1}, \ldots, y_{n}\right) \\
f^{\prime}\left(x_{i}\right) \approx \frac{y_{i}-y_{i-1}}{h}
\end{gathered}
$$

